Topics in Advanced Clinical Trials Randomization, Blinding and Outcomes

Garnet Anderson, PhD
WHI Clinical Coordinating Center
Fred Hutchinson Cancer
Research Center

Overview

- Randomization
 - Methods
 - Considerations
 - Subsampling
- Blinding
- Outcomes
 - Classifications in prevention trials
 - Data collection procedures
 - Data analysis issues
- Examples from WHI Clinical Trials

Randomization

- An unbiased method for assigning interventions to subjects
- Purpose: Assure intervention groups are comparable
- Achieved by assuring assignment of next subject is 'unpredictable'
- Methods
 - Simple
 - Permuted block
 - Dynamic balancing

-	

Simple randomization

- Probability of a subject being assigned to any particular group is independent of all other assignments
- Probability distributions are easily characterized
- Simple to implement
- Does not assure equally-sized groups
- Rarely used

Permuted blocks

- Random assignments for a group of subjects are generated jointly in predefined ratios
- Example: Block size 10 with 1:1 randomization
 - 1. Generate R[10,1]= vector of 5 ones and 5 zeros
 - 2. Generate U[10,1]= vector of 10 uniform (0,1) random numbers
 - 3. Create matrix M=R~U
 - 4. Sort M by column 2
 - 5. Assign group membership according to column 1

Permuted blocks

- · Simple to implement
- Assures balance in treatment assignments within blocks
- Under staggered entry, provides balance over time
- Small block sizes may produce predictable assignments
- Large block sizes may lead to incomplete blocks and hence imbalance

-			
	·	 	

Stratified permuted blocks

- Strata are defined by selected covariate information
- Permuted blocks are applied within these strata
- Assures balance in each stratum
- Increases the complexity of implementation
- Decreases the predictability of assignments
- Increases the chance of imbalance in overall numbers associated with incomplete blocks

Randomized permuted blocks

- Uses random-sized blocks to reduce predictability of later randomizations
- For example:
 - Select range of block sizes: 8,10,12,14,16
 - Generate random sequence of block sizes: 12,8,10,8,16...
 - For each block in turn, generate a permuted block of randomization assignments

Randomized permuted blocks

- Straightforward to implement
- Virtually eliminates predictable assignments
- Chance of imbalance is a function of final block size

_	

Dynamic balancing

- Designed for settings with several prognostic factors
- Uses measure of imbalance in selected covariates to determine probability of assignment to intervention group
- · Focuses on balancing 'main effects'
 - Does not necessarily assure balance within cells defined by cross-classification
- Measure of imbalance can be tailored to emphasize specific covariates or subgroups

Pocock and Simon, Biometrics, 1975.

Dynamic balancing

- For each new subject, the characteristics are noted and the measure of imbalance between Arms A and B is calculated.
- If all relevant factors are currently balanced, Arm A is assigned with probability p=0.5.
- If assignment of next subject to Arm A would reduce imbalance, then randomize to A with p=p' where p' > 0.5, and Arm B with probability 1-p'.

Dynamic balancing

- Example: Assume there are 2 covariates:
- Age (< 50, 50+)
- Sex
 with current allocation as shown.
 Let p' = 2/3. Define a measure of imbalance to be the sum of factor specific differences: (ΣΔi) = 8.

	Α	В	Δ
F	12	13	1
М	15	11	4
<50	13	12	1
50+	14	12	2

If the next subject is M and <50, assign B with p = 2/3. If the next subject is F and <50, assign A with p = 1/2.

Selecting a randomization scheme

- Evaluation
 - Number and prevalence of prognostic factors
 - Strength of their association with outcome
 - Overall sample size and expected sample size within cells
 - Likelihood of investigators predicting subsequent randomization assignments
 - Logistics

Selecting a randomization

- Presence of clear prognostic factors suggests:
 - Stratification
 - Dynamic balancing, if expected sample size per cell is small
- Stratification/balancing on center is recommended for multicenter trials

Data analyses with structured randomization

- Linear models have a well-developed literature associated
- Generalizations to non-linear models are not direct
- In logistic or proportional hazards regression models, use of covariates in the model can be guided by their predictive strength

-		
_	 	

Subsampling

- Selecting a proportion of the overall trial cohort for specific tasks
- Used primarily for costly or burdensome data collection activities
- Examples:
 - Validation studies
 - Intermediate outcome studies
 - Secondary outcome studies requiring specific measurements

Subsampling

- Subsampling plan requires usual design considerations
- For prospective data collection, random selection can be done in conjunction with original randomization
- Blinding to membership in subsample may be needed
- May impact logistics, both positively and negatively

Randomization in the Women's Health Initiative

- · Four randomized clinical trials
- · Partial factorial design
- Participants may enroll in ≤3 trials, each requiring a separate randomization

Randomization in the Women's Health Initiative

- Separate randomizations for each trial
- Stratified, permuted block
- · Stratification on
 - Clinical center site (49 sites)
 - Age (50-54, 55-59,60-69,70-79)
- · Subsamples identified at baseline for
 - Ongoing blood collection and prospective analyses
 - 4 Day Food Records
 - Bone densitometry

Blinding

- The condition in which the randomization assignment is not revealed
- Purpose:
 - Preserve comparability of arms on all factors other than the intervention and its direct effects
 - In particular, assure unbiased outcomes ascertainment and adjudication

Blinded versus masked

Schulz and Grimes. Generation of allocation sequences in randomized trials: chance, not choice. Lancet 2002;359:515-519.

Blinding

- Variations
 - Single blinding: the participant is not informed of the randomization assignment
 - Double blinding: neither the participant nor the study staff interacting with participants are informed
 - Triple blinding: Double blinding with trial monitoring based on coded intervention arms.

Double blind versus single blind

Fig. er 1. The authors: double blinded versus single blinded

Schulz and Grimes. Lancet 2002;359:515-519.

Blinding

- Reduces potential biases in all participant interactions and data collection, especially outcome ascertainment
- Feasibility depends strongly on the type of intervention
 - Most commonly implemented in drug studies
 - Only as effective as the placebo is comparable to the intervention on all aspects other than effect on disease
- · Increases logistical complexity

Unblinding

- Revealing the randomization assignment
- Should be documented
- May be implemented in varying degrees
 - Clinical staff
 - Participant
- Preserve blinding of outcomes data collection process, whenever possible

Blinding and unblinding in WHI

- · Computerized, blinded drug dispensing
 - Study database links participant to a unique bottle ID, based on randomization assignment
 - When bottle is retrieved, barcoded bottle ID is scanned into database to verify accuracy
- Official *unblinding* required for symptom management
- Supported by a database function
 - limited to authorized staff
 - self-documenting
- · Unofficial unblinding from symptoms

Outcomes

- Most important data collection activity of a trial other than safety
- Deserving of considerable effort to assure data timeliness and quality
- Subject to considerable pressures from
 - Changing diagnostic methods
 - Changing medical-legal climate

-		

Outcomes in prevention trials · Usually diverse · Observed only indirectly · Require targeted efforts to ascertain, document and code • WHI as an example Curb, McTiernan, Heckbert, Kooperberg, Stanford, Nevitt, et al. Outcomes ascertainment and adjudication methods in the Women's Health Initiative. Ann Epidemiol 2003:13 In press. Outcomes/Endpoints Primary outcomes - Foundation of the trial - Drives the statistical design - Limited to a small number Secondary - Have noteworthy scientific interest - May have less preliminary data - Trial may not have sufficient power to answer definitively Outcomes Safety outcomes - Known or suspected adverse effects

- May need to be considered in trial design
- Have a prominent role in trial monitoring

Outcomes

- · Intermediate outcomes
 - A measurable quantity predictive of a clinical outcomes
 - Useful as
 - Proof of principle
 - Comparing effects in subgroups where there may be limited power for comparing clinical outcomes

Outcomes

Surrogate

- A measure or event that captures the full effect of the intervention on the disease outcome
 - Advantageous when ascertained more easily or earlier in the disease process
 - Rigorous statistical criteria for establishing surrogacy:

E{ Disease | Intervention, Surrogate }

= E{ Disease | Surrogate}

WHI primary & secondary outcomes

• • • • • • • • • • • • • • • • • • • •	• <u>DM</u>	HRI	CaD
CHD	2°	1°	х
Angina	2°	2°	х
Revascularization	2°	2°	х
CHF	2°	2°	х
Peripheral vascular disease	2°	2°	х
Stroke	2°	2°	х
Venous thromboembolic	Х	2°	х
disease			
Total CVD	2°	2°	Х
Breast cancer	1°	1°S	2°
Colorectal cancer	i°.	X	2°
Endometrial cancer	20	2°	X
Ovarian Cancer	2°	2°	x
Total Cancer	2°	2°	20
Total Cancer	2	2	2
Hip Fractures	х	2°	1°
Other Fractures	Х	2°	2°
Diabetes	2°	x	x
Total Mortality	2°	2°	20
rotal mortality			4

-	

Outcomes ascertainment

- 1st priority: equal ascertainment across intervention arms
 - NOTE: Outcomes data collection can be blinded to randomization assignment, even in an otherwise unblinded trial.
- 2nd priority: complete ascertainment

Outcomes coding/adjudication

- · Standardization always preferable for
 - Definitions
 - Documentation
 - Adjudication procedures
 - Adjudicators

WHI outcomes ascertainment

- Self-report of new clinical events collected at regular, protocol defined intervals (6 months)
 - Avoided non-routine reports for outcomes ascertainment to reduce potential for bias
 - Women with symptoms
 - Women in DM intervention arm
 - Self-report of safety outcomes could trigger processes to stop intervention

WHI outcomes ascertainment

- Search of National Death Index
 - Obtain date and cause of death information based on death certificates only
 - Substantial delay between date of death and appearance in the NDI
 - May not follow-up with additional requests to family or providers for documents
 - Value depends on adequacy of follow-up procedures and quality of personal identifiers
 - Consider providing names with known vital status (both deceased and alive) to estimate hit rates

Outcomes adjudication

- Classification of health events according to pre-defined criteria
- · Criteria should include
 - Explicit definitions
 - Required documentation

WHI outcomes documentation

- Self-report of specified outcomes, or closely related ones, spawned a process of documentation and adjudication
 - Details of event were sought (e.g., dates and locations of hospitalizations)
 - Specific records required for each endpoint type
 - Path reports for cancers
 - · ECGs and enzymes for MI

_	

WHI outcomes adjudication

- Completed outcomes records provided to local clinic's physician adjudicator for review and coding.
- · Central adjudication
 - All primary and safety outcomes
 - All deaths
 - Selected other endpoints (%)
 - Related to primary outcomes
 - Denied, self-reported outcomes

Outcomes data collection issues

- · Timeliness of data collection
 - Critical for trial monitoring purposes
 - Important for adequate documentation
 - Difficult for bureaucratic reasons
 - Multiple institutions
 - Short interval medical release forms
 - · Charges for records
 - HIPAA

Outcomes data collection issues

- · Variation in documents received
 - Confusion in records requested
 - Differences in medical practice
 - Regional
 - Secular
 - Differences in aggressiveness of collection techniques

Outcome adjudication issues

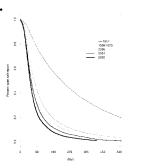
- How many adjudicators per outcome?
- · What defines agreement?
 - Primary diagnosis (e.g., invasive breast cancer)
 - Details of diagnosis (e.g., histology, grade, stage)
- What is the resolution process?

Outcomes data analysis issues

- Mapping outcomes to hypotheses
 - CHD is
 - Definite + probable MI
 - · Coronary death
 - Silent MI

Outcomes data analysis issues

- Defining the "final" data
 - Local vs central adjudication
 - · Central, if applied to all events
 - Local, if central not uniformly available
 - Unrefuted, all central + local that are not yet centrally adjudicated
 - Consideration of
 - Self-reports with no other documentation available
 - Passive data collection sources



Outcomes monitoring

- Timeliness, completeness, and accuracy of data collection
 - Self-report
 - Medical records retrieval
 - Local adjudication
 - Central adjudication

Timeliness of local adjudication

 Percent of selfreported events that have not yet been closed out through local adjudication by days since selfreported event data is received.

Performance monitoring for outcomes

- Performance Monitoring Committee
 - Regularly reviews clinic specific reports
 - Draws attention to performance issues
 - Offers assistance in systems design, tips for overcoming barriers
 - Membership drawn from Coordinating Center, NHLBI and well-performing clinics

Outcomes monitoring

- Rates of events (in control arm) relative to expected
 - Differences in recruited population
 - Healthy volunteer effect
 - Different
 - · Outcomes ascertainment procedures
 - Diagnostic procedures
 - · Outcomes definitions
 - Problems in the outcomes process

Summary

- Randomization
 - Several approaches available
 - May be tailored to assure objective of comparability is met
- Blinding
 - Helps preserves comparability
 - Should be implemented to the extent feasible within the design

Summary

- Outcomes
 - A critical data collections process
 - Requires planning, procedures, training, considerable effort, and ongoing monitoring

_	
_	